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Abstract
Using elementary tools we construct cubic polynomial systems of differential
equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct
a cubic polynomial system of differential equations having an algebraic
homoclinic loop of degree 3. Moreover, we show that there are polynomial
systems of differential equations of arbitrary degree that have algebraic limit
cycles of degree 3, as well as give an example of a cubic polynomial system of
differential equations with two algebraic limit cycles of degree 4.

PACS number: 02.30.Hq
Mathematics Subject Classification: 34C05, 34A34, 34C14

1. Introduction

By definition, a planar polynomial system of differential equations is a system of the form

dx

dt
= ẋ = P(x, y),

dy

dt
= ẏ = Q(x, y), (1)

where P and Q are real polynomials in the variables x and y. The degree i of the polynomial
system of differential equations is the maximum of the degrees of the polynomials P and Q.
In what follows, a planar polynomial system of differential equations of degree 2 or 3 will be
called simply a quadratic or a cubic system, respectively.

In 1900, Hilbert [16] in the second part of its 16th problem proposed to find an estimation
of the uniform upper bound for the number of limit cycles of all polynomial systems of
differential equations of a given degree, and also to study their distribution or configuration
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in the plane (see [23]). This has been one of the main problems in the qualitative theory of
planar polynomial systems of differential equations in the 20th century. The contributions of
Bamon [3] for the particular case of quadratic polynomial systems of differential equations,
and mainly of Écalle [11] and Ilyashenko [18] proving that any polynomial vector field has
finitely many limit cycles, have been the best results in this area. But until now the existence
of the uniform upper bound is not proved. This problem remains open even for the quadratic
systems.

Let f ∈ R[x, y], i.e. f is a polynomial in the variables x and y. The algebraic curve f (x,

y) = 0 is an invariant algebraic curve of the polynomial system of differential equations (1)
if for some polynomial K ∈ R[x, y], we have

P
∂f

∂x
+ Q

∂f

∂y
= Kf. (2)

The polynomial K is called the cofactor of the invariant algebraic curve f = 0. We note that
since the polynomial system has degree i, then any cofactor has at most degree i − 1. Of
course the curve f = 0 is formed by trajectories of the system (1). This justifies the name of
the invariant algebraic curve. We define the degree of the invariant algebraic curve f = 0 as
the degree of the polynomial f .

We recall that a limit cycle of a polynomial system of differential equations is an isolated
periodic orbit in the set of all periodic orbits of the system. An algebraic limit cycle of degree
k is an oval of an irreducible invariant algebraic curve f (x, y) = 0 of degree k which is a limit
cycle of the system.

In this paper, we are mainly interested in studying the algebraic limit cycles of polynomial
systems of differential equations of degree � 3. First, we recall what is known and unknown
on the algebraic limit cycles of quadratic systems, and then we shall present our results on the
algebraic limit cycles of polynomial differential systems.

In 1958, Qin [25] (see also [29]) proved that quadratic systems can have algebraic limit
cycles of degree 2, moreover when such a limit cycle exists then it is the unique limit cycle
of the system. Evdokimenco in [12–14] proved that quadratic systems do not have algebraic
limit cycles of degree 3, for two different shorter proofs see [6, 22].

The first class of algebraic limit cycles of degree 4 was given in 1966 by Yablonskii [28].
The second class was found in 1973 by Filiptsov [15]. Recently, two new classes have been
found and in [8] the authors proved that there are no other algebraic limit cycles of degree 4
for quadratic systems, see theorem 3. The uniqueness of these limit cycles has been proved
in [5].

Applying convenient birational transformation to quadratic systems having algebraic limit
cycles of degree 4 in [8], the authors obtained algebraic limit cycle of degrees 5 and 6 for
quadratic systems, see theorem 4.

Open question 1. In quadratic systems remains the following open questions related with
algebraic limit cycles, see for instance [22].

(i) What is the maximum degree of an algebraic limit cycle of a quadratic system?
(ii) Does there exist a chain of rational transformations which give examples of quadratic

systems with algebraic limit cycles of arbitrary degree?
(iii) The maximal number of algebraic limit cycles that a quadratic system can have is at

most 1?

In this paper, we study the algebraic limit cycles of polynomial systems of differential
equations. It is known that there are cubic systems having algebraic limit cycles of degrees 2
and 3, see the beginning of section 2. In propositions 6, 7 and 8, we provide cubic systems
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having algebraic limit cycles of degrees 4, 5 and 6, respectively. These propositions are the
main results of section 2.

In section 3, we study the algebraic ovals of degree 3 which will be used in section 4
for the characterization of all algebraic limit cycles of degree 3 regular at infinity (for more
details, see section 4 and theorem 12). In section 4, we prove that any oval of an irreducible
algebraic curve f = 0 of degree 3 without points satisfying f = ∂f/∂x = ∂f/∂y = 0 is a
hyperbolic algebraic limit cycle of a convenient polynomial system of differential equations
of degree i � 3, see theorem 15.

In section 4, we also provide some results on algebraic limit cycles of degree k, see
theorem 14 and remark 16.

In section 5, we study the algebraic homoclinic loops of degree 3 which appear in cubic
systems, see theorem 17 and proposition 18.

Finally, in section 6, we provide a cubic system having two algebraic limit cycles.

Open question 2. In cubic systems there remains the following open questions related with
algebraic limit cycles.

(i) What is the maximum degree of an algebraic limit cycle of a cubic system?
(ii) Does there exist a chain of rational transformations which give examples of cubic systems

with algebraic limit cycles of arbitrary degree?
(iii) The maximal number of algebraic limit cycles that a cubic system can have is at most 2?

2. Algebraic limit cycles of degree 2, 3, 4, 5 and 6

In this section, we present cubic systems having algebraic limit cycles. A well-known cubic
system having the algebraic limit cycle x2 + y2 = 1 of degree 2 is

ẋ = −y + x(x2 + y2 − 1), ẏ = x + y(x2 + y2 − 1).

More examples of cubic systems having algebraic limit cycles of degree 2 can be found
in [4, 20, 26].

Paper [21] is concerned with the cubic systems that have an invariant cubic curve of the
form y2 = ax3 + bx2 + cx + d. The author provides explicit examples of cubic systems having
the bounded oval of the cubic curve y2 = x3 + cx2 + 1 with c < −3 3

√
2/2 as an algebraic limit

cycle of degree 3. It turns out that there are cubic systems where this limit cycle is unique and
others where the system has additionally non-algebraic limit cycles. We also discuss algebraic
limit cycles of degree 3 for cubic systems in section 4.

In what follows, we give some examples of cubic systems having algebraic limit cycles
of degree 4, 5, 6, respectively. The main idea is to apply a Poincaré transformation to known
quadratic systems with an algebraic limit cycle of a given degree, preserving the degree of the
algebraic limit cycle but increasing the degree of the system in one unity. To do this, we first
list some results on the algebraic limit cycles of quadratic systems in the next two theorems.

Theorem 3 [6]. After an affine change of variables, the unique quadratic systems having an
algebraic limit cycle of degree 4 are as follows.

(a) The Yablonskii’s system

ẋ = −4abcx − (a + b)y + 3(a + b)cx2 + 4xy,

ẏ = (a + b)abx − 4abcy +
(
4abc2 − 3

2 (a + b)2 + 4ab
)
x2 + 8(a + b)cxy + 8y2,

(3)

with abc �= 0, a �= b, ab > 0 and 4c2(a − b)2 + (3a − b)(a − 3b) < 0. This system
possesses the irreducible invariant algebraic curve

(y + cx2)2 + x2(x − a)(x − b) = 0 (4)
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of degree 4 having two components: an oval (the algebraic limit cycle) and an isolated
point (a singular point).

(b) The Filipstov’s system

ẋ = 6(1 + a)x + 2y − 6(2 + a)x2 + 12xy,

ẏ = 15(1 + a)y + 3a(1 + a)x2 − 2(9 + 5a)xy + 16y2,
(5)

with 0 < a < 3/13. This system possesses the irreducible invariant algebraic curve

3(1 + a)(ax2 + y)2 + 2y2(2y − 3(1 + a)x) = 0 (6)

of degree 4 having two components, one is an oval and the other is homeomorphic to a
straight line. This last component contains three singular points of the system.

(c) The system

ẋ = 5x + 6x2 + 4(1 + a)xy + ay2, ẏ = x + 2y + 4xy + (2 + 3a)y2, (7)

with (−71 + 17
√

17)/32 < a < 0 possesses the irreducible invariant algebraic curve

x2 + x3 + x2y + 2axy2 + 2axy3 + a2y4 = 0 (8)

of degree 4 having three components, one is an oval and each of the others is
homeomorphic to a straight line. Each one of these last two components contains one
singular point of the system.

(d) The system

ẋ = 2(1 + 2x − 2kx2 + 6xy), ẏ = 8 − 3k − 14kx − 2kxy − 8y2, (9)

with 0 < k < 1/4 possesses the irreducible invariant algebraic curve

1
4 + x − x2 + kx3 + xy + x2y2 = 0 (10)

of degree 4 having three components, one is an oval and each of the others is
homeomorphic to a straight line. Each one of these last two components contains one
singular point of the system.

Theorem 4. [8]

(a) The system

ẋ = 28x − 12

α + 4
y2 − 2(α2 − 16)(12 + α)x2 + 6(3α − 4)xy,

ẏ = (32 − 2α2)x + 8y − (α + 12)(α2 − 16)xy + (10α − 24)y2,

(11)

has an irreducible invariant algebraic curve of degree 5 given by

x2 + (16 − α2)x3 + (α − 2)x2y +
1

(4 + α)2
y4 − 6

(4 + α)2
y5 − 2

4 + α
xy2

+
(α − 4)(13 + α)

4
x2y2 +

12 + α

4 + α
xy4 +

8 − α

4 + α
xy3 = 0. (12)

For α ∈ (3
√

7/2, 4), the curve (12) contains an algebraic limit cycle of degree 5.
(b) The system

ẋ = 28(β − 30)βx + y + 168β2x2 + 3xy,

ẏ = 16β(β − 30)(14(β − 30)βx + 5y + 84β2x2) + 24(17β − 6)βxy + 6y2,
(13)
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has an irreducible invariant algebraic curve of degree 6 given by

−7y3 + 3(β − 30)2βy2 + 18(β − 30)(−2 + β)βxy2 + 27(β − 2)2βx2y2

+ 24(β − 30)3β2xy + 144(β − 30)(β − 2)2β2x3y + 48(β − 30)4β3x2

+ 576(β − 30)2(β − 2)2β3x4 − 432(β − 2)2β2(3 + 2β)x4y

− 3456(β − 30)(−2 + β)2β3(3 + 2β)x5

+ 3456(−2 + β)2β3(12 + β)(3 + 2β)x6

+ 24(β − 30)2β2(9β − 4)x2y + 64(β − 30)3β3(9β − 4)x3 = 0. (14)

For β ∈ (3/2, 2), the curve (14) contains an algebraic limit cycle of degree 6.

The following lemma is concerned with quadratic systems.

Lemma 5

(a) [29] Let X and Y be functions of class C1 defined on a simply connected open region U of
R

2. If

div(X(x, y), Y (x, y)) = ∂X(x, y)

∂x
+

∂Y (x, y)

∂y
= 0,

then the vector field

X(x, y)
∂x

∂
+ Y (x, y)

∂

∂y

has no limit cycles in U .
(b) [9, 29] For a quadratic system, there exists a unique singular point inside the bounded

region limited by a closed orbit and it is either a center or a focus, and the determinant
of the linear part at the singular point is nonzero.

The next result provides examples of cubic systems having algebraic limit cycle of
degree 4.

Proposition 6

(a) The cubic system

ẋ = x(−3(a + b)c + 4abcx − 4y + (a + b)xy),

ẏ = − 3
2a2 + ab − 3

2b2 + 4abc2 + ab(a + b)x + 5(a + b)cy + 4y2 + (a + b)xy2,
(15)

has an irreducible invariant algebraic curve of degree 4 given by

1 + c2 − (a + b)x + abx2 + 2cxy + x2y2 = 0 (16)

with cofactor 4x(2abc + (a + b)y). For abc �= 0, a �= b, ab > 0, 4c2(a − b)2 + (3a −
b)(a − 3b) < 0, the curve (16) contains an algebraic limit cycle of degree 4.

(b) The cubic system

ẋ = −2x(−3(2 + a) + 3(a + 1)x + 6y + xy),

ẏ = 3a(a + 1) − 2(3 + 2a)y + 9(a + 1)xy + 4y2 − 2xy2,
(17)

has an irreducible invariant algebraic curve of degree 4 given by

3(a + 1)(a + xy)2 + 2xy2(−3 − 3a + 2y) = 0 (18)

with cofactor 2x(3 + 3a − 4y). For 0 < a < 3/13, the curve (18) contains an algebraic
limit cycle of degree 4.
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(c) The cubic system

ẋ = −x(6 + 5x + 4(a + 1)y + ay2), ẏ = x − 2y − 3xy − (a + 2)y2 − ay3, (19)

has an irreducible invariant algebraic curve of degree 4 given by

x + x2 + xy + 2axy2 + 2ay3 + a2y4 = 0 (20)

with cofactor −2(3 + 5x + (2a + 3)y + 2ay2). For (−71 + 17
√

17)/32 < a < 0, the curve
(20) contains an algebraic limit cycle of degree 4.

(d) The cubic system

ẋ = 2x(2k − 2x − 6y − x2)),

ẏ = −14kx + 2ky + (8 − 3k)x2 − 4xy − 20y2 − 2x2y,
(21)

has an irreducible invariant algebraic curve of degree 4 given by

kx − x2 + x3 + 1
4x4 + x2y + y2 = 0 (22)

with cofactor 4(k − 2x − 2x2 − 10y). For 0 < k < 1/4, the curve (22) contains an
algebraic limit cycle of degree 4.

Proof. First of all, we prove that the algebraic limit cycles appearing in the quadratic systems
(3), (5), (7) and (9) do not intersect the y-axis.

Substituting x = 0 into (4), we get y2 = 0. This implies that the curve (4) intersects the
y-axis at the unique point (0, 0) which is a singular point of system (3). Hence, the algebraic
limit cycle of system (3), contained in the curve (4), does not intersect the y-axis.

Using the same arguments as above, we conclude that the algebraic limit cycle of system
(7) does not intersect the y-axis.

For system (5), we have

dx

dt

∣∣∣∣
x=0

= 2y,

which implies that if a limit cycle of system (5) intersects the y-axis, then the origin is in the
bounded region limited by this limit cycle. The origin is an unstable node, which contradicts
the statement (b) of lemma 5.

A direct computation yields that the curve (10) and y-axis has no common point.
Therefore, for all points (x, y) of an algebraic limit cycle appearing in the quadratic systems
(3), (5), (7) and (9), we have x �= 0. Applying the Poincaré transformation

x = 1

z
, y = u

z
, dt = z dτ (23)

to the quadratic systems (3), (5), (7), (9) and replacing (z, u) again by (x, y), we get the
systems (15), (17), (19), (21), respectively. The curves (16), (18), (20) and (22) are obtained
from (4), (6), (8) and (10), respectively, by means of the same changes of coordinates and
multiplication by z4. �

The next two results provide examples of cubic systems having algebraic limit cycles of
degrees 5 and 6.

Proposition 7. The cubic system

ẋ = x

(
2(α2 − 16)(α + 12) − 28x − 6(3α − 4)y +

12

α + 4
y2

)
,

ẏ = −2(α2 − 16)x + (α2 − 16)(α + 12)y − 20xy − 8αy2 +
12

α + 4
y3,

(24)
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has an irreducible invariant algebraic curve of degree 5 given by

−(α2 − 16)x2 + x3 + (α − 2)x2y +
1

4
(α − 4)(α + 12)xy2 − 2x2y2

α + 4

− (α − 8)xy3

α + 4
+

(α + 12)y4

α + 4
+

xy4

(α + 4)2
− 6y5

(α + 4)2
= 0 (25)

with cofactor 4(α2 − 16)(α + 12) − 84x − 2(19α − 12)y + 60
α+4y2. For α ∈ (3

√
7/2, 4), the

curve (25) contains an algebraic limit cycle of degree 5.

Proof. Since (0, 0) is a singular point of system (11) and

dx

dt

∣∣∣∣
x=0

= − 12

α + 4
y2 � 0,

the limit cycle of system (11) does not intersect the y-axis. Applying the Poincaré
transformation (23) to the quadratic system (11), the claim of this proposition follows. �

Proposition 8. The cubic system

ẋ = −x
(
168β2 − 84β(β + 10)x + 3y + 28

3 β(β + 30)x2
)
,

ẏ = 1344(β − 30)β3 − 672(β − 30)β2(β + 10)x + 48β(5β − 3)y

+ 224
3 β2(β2 − 900)x2 + 28β(β − 54)xy + 3y2 − 28

3 β(β + 30)x2y, (26)

has an irreducible invariant algebraic curve of degree 6 given by

3456(−2 + β)2β3(12 + β)(3 + 2β) − 10368(−2 + β)3β3(3 + 2β)x

+ 576(−2 + β)2β3(360 − 360β + 41β2)x2 − 448β3(−11520 + 30600β

− 676β2 − 442β3 + 29β4)x3 + 112β3(294480 + 86880β − 6552β2

− 440β3 + 33β4)x4 − 1568

3
β3(45648 + 3168β − 440β2 − 8β3 + β4)x5

+
784

27
β3(140688 − 680β2 + β4)x6 − 432(−2 + β)2β2(3 + 2β)xy

+ 1296(−2 + β)3β2x2y − 168β2(432 − 1092β + 40β2 + 3β3)x3y

+ 56β2(−10632 − 1124β + 82β2 + β3)x4y − 1568

3
β2(β2 − 396)x5y

+ 27(β − 2)2βx2y2 − 504(β − 2)βx3y2 + 2352βx4y2 − 7x3y3 = 0 (27)

with cofactor −56βx(−6β +30x +βx). For β ∈ (3/2, 2), the curve (27) contains an algebraic
limit cycle of degree 6.

Proof. For system (13), we have

dx

dt

∣∣∣∣
x=− 1

3

= 28

3
β(30 + β) �= 0,

which shows that the limit cycle of system (13) does not intersect the straight line x = −1/3.
Applying the Poincaré transformation

z = 1

x + 1
3

, u = y

x + 1
3

, dt = z dτ

to the quadratic system (13) and replacing (z, u) again by (x, y), we get system (26). The curve
(27) is obtained from (14) by means of the same changes of coordinates and multiplication
by z6. �
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3. Ovals of degree 3

Lemma 9 [17]. Any cubic Hamiltonian H(x, y) such that its quadratic Hamiltonian system
has a singular point of center type at the origin can be written via an affine change of variables
into the form

H(x, y) = 1
2 (x2 + y2) − 1

3x3 + axy2 + 1
3by3, (28)

where the parameters a and b are in the set

� = {− 1
2 � a � 1, 0 � b � (1 − a)(1 + 2a)

1
2
}
. (29)

The oval of H(x, y) = h around the center at the origin exists for the Hamiltonian values
h ∈ � = (0, 1/6).

Proposition 10. The algebraic curve of degree 3 contains an oval without a point whose
coordinates satisfy f (x, y) = ∂f (x, y)/∂x = ∂f (x, y)/∂y = 0 if and only if it can be written
via an affine change of variables into the form

H(x, y) = h, (a, b) ∈ �,h ∈ �, (30)

where H,� and � are defined as in lemma 9. Moreover, the algebraic curve (30)

(a) contains a unique oval and
(b) is irreducible if and only if (b, h) �= (0, (1 + 3a)/(24a3)).

Proof. By lemma 9, the ‘if part’ follows. For proving the ‘only if part’, we suppose that
f (x, y) = 0 is an algebraic curve of degree 3 having an oval without point whose coordinates
satisfy f (x, y) = ∂f (x, y)/∂x = ∂f (x, y)/∂y = 0. Then, f (x, y) = 0 is a trajectory of the
quadratic Hamiltonian system

ẋ = ∂f (x, y)

∂y
, ẏ = −∂f (x, y)

∂x
. (31)

By lemma 5, the closed component of f (x, y) = 0 is not a limit cycle of system (31), which
implies that it is a closed orbit surrounding a center and the determinant of linear part at this
center is nonzero. By lemma 9, f (x, y) can be written into the form (30). This completes the
proof of the ‘only if part’.

Assume that the algebraic curve H(x, y) = h contains two ovals, which are two closed
orbits of system

ẋ = ∂H

∂y
= y + 2axy + by2, ẏ = −∂H

∂x
= −x + x2 − ay2. (32)

A picture with the phase portraits of this system in function of the parameters a and b can
be found in figure 1 of [17]. By lemma 5 there exists a center inside each oval. If these
two closed orbits surround the same center, then the straight line passing through the center
should intersect in at least four points the algebraic curve H(x, y) = h of degree 3, which
is a contradiction. If these two closed orbits surround two different centers, then the straight
line connecting the two centers should intersect in at least four points the algebraic curve
H(x, y) = h of degree 3, which again is a contradiction.

Suppose that H(x, y) − h is reducible and h ∈ � = (0, 1/6), then H(x, y) − h can be
written as the form

H(x, y) − h = (αx + βy + δ)H2(x, y),

where α, β and δ are real constants, α2 + β2 �= 0,H2(x, y) is a polynomial of degree 2.
Lemma 9 implies that the straight line αx+βy+δ = 0 does not intersect the oval H2(x, y) = 0,
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which gives δ �= 0. Since αx + βy + δ = 0 is an invariant line of system (32), we have that
αẋ + βẏ ≡ 0 for the points (x, y) satisfying αx + βy + δ = 0. If β �= 0, α �= 0, then

(αẋ + βẏ)|y=− αx+δ
β

= 1

β2
(−δ(αβ − bαδ + aβδ) + (−α2β − β3 + 2bα2δ − 4aαβδ)x

+ (bα3 − 3aα2β + β3)x2) ≡ 0,

which yields

a = 1

2

(
−1 +

β2

δ2

)
, b = β(−β2 + 3δ2)

2δ3
, α = −δ. (33)

If (33) holds, then

H(x, y) − h − (−δx + βy + δ)H2(x, y) = 1
6 − h,

where

H2(x, y) = 1

6δ3
(−δ2 − δ2x + 2δ2x2 + βδy + 2βδxy + (3δ2 − β2)y2).

This means that H(x, y) − h is reducible if and only if h = 1/6 �∈ �. If β �= 0, α = 0, then

(αẋ + βẏ)|y=− δ
β

= 1

β
(−aδ2 − β2x + β2x2) �≡ 0,

which is a contradiction.
If β = 0, then for the system (32),

dx

dt

∣∣∣∣
x=− δ

α

= y(α − 2aδ + bαy)

α
≡ 0

if and only if α = 2aδ, b = 0, which implies

H(x, y) − h − 1

24a3
(2ax + 1)(−1 − 3a + 2a(1 + 3a)x − 4a2x2 + 12a3y2) = 1 + 3a

24a3
− h.

This yields that H(x, y) − h is reducible if and only if b = 0, h = (1 + 3a)/(24a3). �

4. The algebraic limit cycles of degree � 3

In this section, we give some results about the algebraic limit cycles of degree k � 3.
A polynomial f (x, y) ∈ C[x, y] of degree k is said to be regular at infinity if the principal

homogeneous part f̂ of f (a homogeneous polynomial of degree k) is a product of k pairwise
different linear forms, see [24] for more details.

If an irreducible algebraic curve f (x, y) = 0 of degree k is regular at infinity and contains
a closed orbit (a limit cycle, or a period orbit surrounding a center) of a polynomial system
of differential equations, then the closed orbit is called an algebraic closed orbit regular at
infinity of degree k.

Lemma 11. [7] Let

ẋ = X(x, y), ẏ = Y (x, y) (34)

be a polynomial system of differential equations of degree j having an invariant algebraic
curve f (x, y) = 0 of degree k. Assume that

(i) there are no points at which f and their first derivatives vanish simultaneously, and that
(ii) the highest order homogenous part of f has no repeated factors.
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If (fx, fy) = 1, then system (34) has the form

x ′ = A(x, y)f (x, y) − D(x, y)fy(x, y), y ′ = B(x, y)f (x, y) + D(x, y)fx(x, y),

where A(x, y), B(x, y) and D(x, y) are polynomials with deg A(x, y) � j −k, deg B(x, y) �
j − k and deg D(x, y) � j − k + 1.

We note that condition (ii) in lemma 11 means that f (x, y) is regular at infinity.

Theorem 12. A cubic system has an irreducible invariant algebraic curve containing an oval
regular at infinity of degree 3 if and only if this system can be written via an affine change of
variables into the form

ẋ = −(l + mx + ny)Hy(x, y) + r(H(x, y) − h) = P(x, y),

ẏ = (l + mx + ny)Hx(x, y) + s(H(x, y) − h) = Q(x, y).
(35)

Here, l, m, n, r and s are real constants, l2 + m2 + n2 �= 0,H(x, y) is defined in (28),
h ∈ � = (0, 1/6), b2 − 4a3 �= 0, (b, h) �= (0, (1 + 3a)/(24a3)) and the system

H(x, y) = h, l + mx + ny = 0 (36)

has no solutions for x ∈ (x1(h), x2(h)), where (x1(h), 0) and (x2(h), 0) are the two intersection
points of the closed component of H(x, y) = h with the x-axis. Moreover,

(a) the algebraic closed orbit is a hyperbolic limit cycle if and only if mr + ns �= 0 and
(b) if mr + ns = 0 then system (35) has no limit cycles.

Proof. If (Hx,Hy) �= 1, then there exists a curve on which each point is a singular point of
the Hamiltonian system (32). However, this phase portrait does not appear in figure 1 of [17].
Therefore, we have (Hy,Hx) = 1. On the other hand, the curve H(x, y) = h is regular at
infinity if and only if b2 − 4a3 �= 0. Proposition 10 shows that H(x, y) = h is irreducible if
and only if (b, h) �= (0, (1 + 3a)/(24a3)).

Proposition 10 and lemma 11 imply that a cubic system with an algebraic closed curve of
degree 3 can be written via an affine change of variables into the form (35). Of course, this
closed curve may be a limit cycle, a homoclinic loop, a heteroclinic loop or a periodic orbit
surrounding a center.

Let �h be the oval of the algebraic curve H(x, y) = h. Then, �h is a periodic orbit of
system (35) if and only if there does not exist any singular point on �h. There are two types
of singular points on H(x, y) = h, those whose coordinates satisfy

H(x, y) = h, Hy(x, y) = 0, Hx(x, y) = 0, (37)

and those whose coordinates satisfy (36). By proposition 10, singular points satisfying (37)
do not exist. Hence, (36) has no solution in the interval (x1(h), x2(h)) if and only if �h is a
periodic orbit of system (35).

It is well known (see for instance [10]) that the periodic orbit �h is a hyperbolic limit
cycle if and only if∫ T (h)

0
div(P,Q) dt =

∫ T (h)

0

(
∂P (x, y)

∂x
+

∂Q(x, y)

∂y

)
dt �= 0,

where T (h) is the period of �h. Since H(x, y) = h is an invariant algebraic curve, we have
on it that Hx(x, y) dx + Hy(x, y) dy = 0. On the other hand, from system (35) we obtain

dt = dx

P (x, y)
.
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Therefore,∫ T (h)

0
div(P,Q) dt =

∮
�h

(
∂P (x, y)

∂x
+

∂Q(x, y)

∂y

)
dx

P (x, y)

=
∮

�h

(r + n)Hx(x, y) + (s − m)Hy(x, y)

−(l + mx + ny)Hy(x, y)
dx

=
∮

�h

m − s

l + mx + ny
dx −

∮
�h̄

(r + n)Hx(x, y)

(l + mx + ny)Hy(x, y)
dx

=
∮

�h

m − s

l + mx + ny
dx +

∮
�h̄

r + n

(l + mx + ny)
dy

=
∫ ∫

Int�h

mr + ns

(l + mx + ny)2
dx dy,

where we use the Green formula and suppose that �h has the counterclockwise orientation.
Therefore, the period orbit �h is a hyperbolic limit cycle if and only if mr + ns �= 0. So
statement (a) is proved.

If mr + ns = 0,m2 + n2 �= 0, then l + mx + ny = 0 is an invariant algebraic curve
with cofactor K1(x, y) = nHx(x, y) − mHy(x, y). On the other hand, the cofactor of the
invariant algebraic curve H(x, y) = h is K2(x, y) = rHx(x, y) + sHy(x, y). Therefore,
sK1(x, y) + mK2(x, y) ≡ 0. It follows from Darboux theorem (see, for instance, theorem 14
in [6]) that system (35) has a first integral of the form

(l + mx + ny)s(H(x, y) − h)m. (38)

If m = n = 0, l �= 0, then the system (35) has a first integral of the form

l ln|H(x, y) − h| + sx − ry. (39)

From (38) and (39) statement (b) follows easily. �

Proposition 13. If r �= 0, (a, b) ∈ �,h ∈ �, l ∈ (−∞,− 1
2

) ∪ (1, +∞) and (b, h) �=
(0, (1 + 3a)/(24a3)), then the system

ẋ = −(x − l)Hy(x, y) + r(H(x, y) − h) = P̄ (x, y),

ẏ = (x − l)Hx(x, y) + s(H(x, y) − h) = Q̄(x, y),
(40)

has an irreducible hyperbolic algebraic limit cycle of degree 3, where H(x, y),�,� are
defined as in lemma 9.

Proof. We first prove that there is no singular point on the oval �h of algebraic curve
H(x, y) = h. There are two types of critical points on H(x, y) = h: those whose coordinates
satisfy (37), and those whose coordinates satisfy

H(x, y) = h, x = l. (41)

We know that singular points satisfying (37) do not exist by proposition 10.
Denoted by �1/6, the homoclinic loop of the quadratic Hamiltonian system (32) is defined

by H(x, y) = 1
6 . By direct computation we know that �1/6 intersects the x-axis at the points

(1, 0) and
(− 1

2 , 0
)
, which implies that the line x = l does not intersect �1/6. Since in the

closed orbit �h of system (32) lies the bounded region limited by the homoclinic loop �1/6, it
does not intersect the straight line x = l. Therefore, there is no singular point on the oval �h

of algebraic curve H(x, y) = h for h ∈ �, which shows that �h is a periodic orbit.
By the same arguments as in the proof of theorem 12, we obtain that∫ T (h)

0
div(P̄ , Q̄) dt =

∮
�h

1 − s

x − l
dx +

r

x − l
dy = −sgn(l)

∫ ∫
Int�h

r

(x − l)2
dx dy �= 0,
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where T (h) is the period of the periodic orbit �h. Consequently, �h is an irreducible hyperbolic
algebraic limit cycle of degree 3. �

In the rest of this section, we consider algebraic limit cycles of polynomial systems of
differential equations of degree i � 3. First, we prove the following theorem.

Theorem 14. Any oval of an irreducible algebraic curve f (x, y) = 0 of degree k without
a point (x, y) satisfying ∂f (x, y)/∂x = ∂f (x, y)/∂y = 0 is an algebraic limit cycle of a
convenient polynomial system of differential equations of degree i, i � k + 1.

Proof. If algebraic curve f (x, y) = 0 of degree k contains an oval without a point (x, y)

satisfying ∂f (x, y)/∂x = ∂f (x, y)/∂y = 0, then it is a closed orbit of the Hamilton
system ẋ = ∂f (x, y)/∂y, ẏ = −∂f (x, y)/∂x. Let f (x, y) = h be a first integral of this
Hamiltonian system and (hc, hs) be the maximum interval of existence of the closed orbits
�h ⊂ {(x, y)|f (x, y) = h}, hc < 0 < hs . Consider the perturbed polynomial system of
degree i � k + 1:

ẋ = ∂f (x, y)

∂y
, ẏ = −∂f (x, y)

∂x
+ εf (x, y)(y + xi−k). (42)

It follows by direct computation that f (x, y) = 0 is an invariant algebraic curve of system (42)
with cofactor K(x, y) = εfy(x, y)(y + xi−k). The Abelian integral, associated with system
(42), is given by

I (h) =
∮

�h

f (x, y)(y + xi−k) dx = hI0(h), (43)

where we suppose that the oval �h has a clockwise orientation and

I0(h) =
∮

�h

y dx =
∫ ∫

Int�h

dx dy �= 0. (44)

It is well known (see, for instance, [19] or [1] p 313) that the displacement function of the
perturbed system (42) can be expressed in the form

d(h, ε) = εI (h) + O(ε2), (45)

and the following statements hold when I (h) �≡ 0.

(a) If there exists h∗ ∈ (hc, hs) such that I (h∗) = 0 and I ′(h∗) �= 0, then system (42) has a
unique limit cycle bifurcating from �h∗ , moreover, this limit cycle is hyperbolic.

(b) The total number (counting the multiplicities) of the limit cycles of system (42) bifurcation
from the period annulus of the Hamiltonian system (42) with ε = 0 is bounded by the
maximum number of isolated zeros (taking into account their multiplicities) of the Abelian
integral I (h) for h ∈ (hc, hs).

(c) I (h) is an analytic function in h ∈ (hc, hs).

We note that I (h) has a unique zero at h = 0 and I ′(0) = I0(0) �= 0. Since (43) and
(44) implies d(h, ε) �≡ 0, the oval contained in f (x, y) = 0 is a hyperbolic algebraic limit
cycle. �

Now we give the main results of this section.

Theorem 15. Any oval of an irreducible algebraic curve f (x, y) = 0 of degree 3 without
a point (x, y) satisfying ∂f (x, y)/∂x = ∂f (x, y)/∂y = 0 is an algebraic limit cycle of a
convenient polynomial system of differential equations of degree i, i � 3.

Proof. The statement follows from proposition 13 and theorem 14. �
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Recall (see the introduction) that quadratic systems cannot have algebraic limit cycles of
degree 3, but theorem 15 shows that for arbitrary degree > 2 there are polynomial systems of
differential equations having algebraic limit cycles of degree 3.

Remark 16. Suppose that the algebraic curve f (x, y) = 0 of degree k contains an oval.
Instead of system (42), consider the perturbed system of degree i � kj + 1:

ẋ = ∂f

∂y
, ẏ = −∂f

∂x
+ ε(f − h1)(f − h2) · · · (f − hj )g(x, y), (46)

where g(x, y) is a polynomial of degree i − kj and hl ∈ (hc, hs), l = 1, 2, . . . , j . By
direct computation, f (x, y) = hl is an invariant algebraic curve with cofactor Kl(x, y) =
εfy(f − h1) · · · (f − hl−1)(f − hl+1) · · · (f − hj )g(x, y). The associated Abelian integral is
given by

I (h) = (h − h1)(h − h2) · · · (h − hj )

∮
�h

g(x, y) dx.

(a) If g(x, y) = y+xi−kj , then system (46) has j algebraic limit cycles of degree k. Moreover,
these limit cycles are hyperbolic if hl1 �= hl2 for l1 �= l2.

(b) If
∮
�h

g(x, y) dx has v simple zeros different from hl for l = 1, 2, . . . , j , then system (46)
has at least v + j limit cycles. Note that these additional v limit cycles in general are not
algebraic.

5. Invariant algebraic homoclinic loop of degree 3

It is easy to find examples of period annulus whose boundary is given by an algebraic
homoclinic loop of degree 3. In this section, we only consider for cubic systems algebraic
homoclinic loops which are not boundary of a period annulus.

Recall that X = X̄ is called a hyperbolic singular point of system Ẋ = R(X),X ∈ R
n if

R(X̄) = 0, and none of the eigenvalues of DR(X̄) has zero real part [27].

Theorem 17. If an irreducible algebraic curve regular at infinity of degree 3 contains
a homoclinic loop of a cubic system with a hyperbolic saddle, then it can be reduced to
H(x, y) = 1

6 , where H(x, y) is defined in (28), b2 − 4a3 �= 0, b �= (1 − a)(1 + 2a)1/2(a, b) ∈
�.

Proof. Suppose that the algebraic curve f (x, y) = 0 regular at infinity of degree 3 contains
a homoclinic loop of a cubic system with a hyperbolic saddle (x0, y0), then either it can be
put into the form (30), or the closed component of f (x, y) = 0 contains the singular point
(x0, y0) satisfying ∂f (x0, y0)/∂x = ∂f (x0, y0)/∂y = 0.

If the algebraic curve is reduced to the normal form (30), then it follows from lemma 11
that this cubic system can be written in the form of system (35), where l, m, n, r and s are also
real constants, l2 + m2 + n2 �= 0, b2 − 4a3 �= 0,H(x, y) = h contains a homoclinic loop of
system (35), denoted by �̄h. Note that we do not need other conditions in theorem 12 except
ones given explicitly.

Let (x0, y0) be the hyperbolic saddle on �̄h. Then (x0, y0) satisfies either (36), or (37). It
follows from proposition 10 that (x0, y0) is not a solution of (37). Therefore, assume (x0, y0)

satisfies (36).
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Since �̄h is a homoclinic loop, the straight line l + mx + ny = 0 contacts �̄h at an unique
point (x0, y0). This implies that one of the following two equations has exactly one solution
with multiplicity 2:

H

(
x,− l + mx

n

)
= h, n �= 0,

H

(
− l

m
, y

)
= h, n = 0, m �= 0,

which yields

nHx(x0, y0) − mHy(x0, y0) = 0, n �= 0, (47)

Hy(x0, y0) = 0, n = 0, m �= 0, x0 = − l

m
. (48)

If (47) holds, then

det

( ∂P (x,y)

∂x

∂P (x,y)

∂y

∂Q(x,y)

∂x

∂Q(x,y)

∂y

)
(x0,y0)

= det

(−mHy(x0, y0) + rHx(x0, y0) (−n + r)Hy(x0, y0)

(m + s)Hx(x0, y0) nHx(x0, y0) + sHy(x0, y0)

)
= (m + s)(r − n) det

(
Hx(x0, y0) Hy(x0, y0)

Hx(x0, y0) Hy(x0, y0)

)
= 0.

This means that the singular point (x0, y0) is not a hyperbolic saddle point. If (48) holds, then
(x0, y0) is also not a hyperbolic saddle by the same arguments as above. Therefore, if the
algebraic curve f (x, y) = 0 regular at infinity of degree 3 contains a homoclinic loop with
hyperbolic saddle (x0, y0), then ∂f (x0, y0)/∂x = ∂f (x0, y0)/∂y = 0.

The algebraic f (x, y) = 0 should be a trajectory of the quadratic Hamiltonian system
(31). In [2], the authors proved that there are exactly 28 non-equivalent topological phase
portraits of quadratic Hamiltonian systems. The phase portraits appearing in [2] show that
if the quadratic Hamiltonian system has a homoclinic loop, then there is a center inside this
loop. Hence, it follows from lemma 9 that f (x, y) = 0 can be put into the normal form
H(x, y) = 1/6. Finally, it follows from the proof of proposition 10 (in particular, see (33))
that H(x, y) = 1/6 is reducible if and only if b = (1 − a)(1 + 2a)1/2. The statement of the
theorem is proved. �

Finally, we show that H(x, y) = 1/6 is a homoclinic loop of a convenient cubic system.
The definition of the hyperbolic stability of a homoclinic loop is given by the integral of the
divergence along the homoclinic orbit. This definition can be obtained passing to the limit the
usual definition of a hyperbolic limit cycle, see for instance [10].

Proposition 18. Suppose that H(x, y) is defined in (28), b �= (1 − a)(1 + 2a)1/2(a, b) ∈
�, l ∈ (−∞,− 1

2

) ∪ (1, +∞), r �= 0. Then the algebraic curve H(x, y) = 1
6 of degree 3

contains an irreducible homoclinic loop of system

ẋ = −(x − l)Hy(x, y) + r
(
H(x, y) − 1

6

) = P̃ (x, y),

ẏ = (x − l)Hx(x, y) + s
(
H(x, y) − 1

6

) = Q̃(x, y).
(49)

The homoclinic loop is hyperbolic stable (resp. unstable) if sgn(l)r > 0 (resp. sgn(l)r < 0).
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Proof. By the same arguments as proposition 13, we conclude that the closed component �1/6

of algebraic curve H(x, y) = 1/6 just contains a hyperbolic saddle (1, 0), and∫ ∞

−∞
div(P̃ , Q̃) dt =

∮
�1/6

1 − s

x − l
dx +

r

x − l
dy = −sgn(l)

∫ ∫
Int�1/6

r

(x − l)2
dx dy �= 0.

Therefore, �1/6 is a stable (resp. unstable) homoclinic loop if sgn(l)r > 0 (resp.
sgn(l)r < 0). �

6. Cubic systems with two algebraic limit cycles

In this section, we present a cubic system with two algebraic limit cycles surrounding two
different foci, one is contained in x > 0 and the other in x < 0.

Proposition 19. System

ẋ = 2y(10 + xy), ẏ = 20x + y − 20x3 − 2x2y + 4y3 (50)

possesses two algebraic limit cycles contained in the invariant algebraic curve
1
2y2 − 1

2x2 + 1
4x4 = − 1

8 . (51)

Proof. System (50) has three singular points in the finite plane: a saddle at (0, 0) and two
stable foci at (±1, 0). The Hamiltonian system

ẋ = y, ẏ = x − x3

has a first integral H(x, y) = y2/2 − x2/2 + x4/4 = h which corresponds to two closed orbits
surrounding the center (±1, 0) if h ∈ (−1/4, 0). This yields that the algebraic curve (51)
contains two ovals. It is easy to prove that (51) is an invariant algebraic curve of system (50)
with cofactor K(x, y) = 8y2. Since there are no singular points of system (50) on the curve
(51) and the foci (±1, 0) are inside the two ovals, the statement follows. �
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